首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
42.
43.
With approximately 25 endemic species, the genus Pyrus (pears) is highly diverse in the Caucasus ecoregion. The majority of Caucasian pears inhabit xerophytic open woodlands or similar habitats, to which they display morphological adaptations, such as narrow leaves. The other species, both Caucasian and non‐Caucasian taxa, mainly inhabit mesophytic forests and display broad leaves. Using a representative taxon sampling of Pyrus from the Caucasus, Europe and Asia, we reconstruct phylogenetic relationships in the genus based on multiple plastid regions. We also estimate the divergence times of major clades in Pyrus, reconstruct the evolution of leaf shapes, and discuss the emergence of xeromorphic leaf traits. Our results confirm the monophyly of Pyrus and the existence of two major clades: (a) an E Asian clade with a crown group age of 15.7 (24.02–8.37 95% HPD) My, and (b) a W Eurasian clade that comprises species from Europe, SW Asia and the Caucasus and that displays a slightly younger crown group of 12.38 (19.02–6.41 95% HPD) My. The existing infrageneric classification of Pyrus was found partially incongruent with the inferred phylogenetic trees. Several currently accepted species were not recovered as monophyletic, indicating that current species limits require re‐evaluation. Ancestral character state reconstructions revealed several independent transitions from broad‐ to narrow‐shaped leaves in Pyrus, probably via intermediate‐shaped leaves.  相似文献   
44.
The implementation of electron beam radiation coupled with the use of probiotics is one of the newest food processing technologies that may be used to ensure food safety and improve shelf life of food products. The purpose of this study was to evaluate the effect of 50–150-Gy electron beam irradiation on the antimicrobial activity of the putative probiotic strain Lactobacillus rhamnosus Vahe. Low-dose electron beam irradiation of lactobacilli cells was performed using the Advanced Research Electron Accelerator Laboratory’s electron accelerator, and the agar well diffusion method and Verhulst logistic function were used to evaluate the effect of radiation on anti–Klebsiella pneumoniae activity of the cell free supernatant of L. rhamnosus Vahe cells in vitro. Our results suggest that 50–150-Gy electron beam irradiation decreases the viability of the investigated lactobacilli, but does not significantly change the probiotic’s activity against K. pneumoniae. Results indicate that the combined use of irradiation and L. rhamnosus Vahe might be suggested for non-thermal food sterilizing technologies.  相似文献   
45.
We studied the expression of FREK (fibroblast growth factor receptor-like embryonic kinase), a new receptor recently cloned from quail embryo, during the differentiation of skeletal muscle satellite cells and epiphyseal growth-plate chondrocytes. Although FREK mRNA was expressed in both cell types, satellite cells expressed higher levels of this mRNA than chondrocytes. FREK gene expression was found to be modulated by b-FGF in a biphasic manner: low concentrations increased expression, whereas high concentrations attenuated it. In both cell cultures, the levels of FREK mRNA declined during terminal differentiation. Moreover, retinoic acid (RA), which induces skeletal muscle satellite cells to differentiate, also caused a reduction in FREK gene expression in these cells. Induction of chondrocyte differentiation with ascorbic acid was monitored by a decrease in collagen type II gene expression and an increase in alkaline phosphatase activity. Satellite cell differentiation was marked by morphological changes as well as by increased sarcomeric myogenin content and creatine kinase activity and changes in the expression of the regulatory muscle-specific genes, MyoD and myogenin. DNA synthesis in both cell types was stimulated by b-FGF. However, in satellite cells, the response was bell-shaped, peaking at 1 ng/ml b-FGF, whereas in chondrocytes, higher levels of b-FGF were needed. b-FGF-dependent DNA synthesis in satellite cells was decreased by RA at concentrations over 10-7M . The observed correlation between the level of FREK gene expression and various stages of differentiation, its modulation by b-FGF and RA, as well as the correlation between FREK gene expression and the physiological response to b-FGF, suggest that this specific FGF receptor plays an important role in muscle and cartilage cell differentiation.  相似文献   
46.
47.
48.
It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20 patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p<0.01). Expression of TRPC3 was significantly inversely correlated with estimated glomerular filtration rates (Spearman r=-0.41) or serum calcium concentration (Spearman r=-0.34). During a hemodialysis session serum calcium concentrations significantly increased, whereas the expression of TRPC3 channels and calcium influx significantly decreased. In vitro studies confirmed that higher calcium concentrations but not magnesium, barium nor sodium concentrations significantly decreased TRPC3 expression in human monocytes. This study indicates that reduced extracellular calcium concentrations up-regulate TRPC3 channel protein expression in patients with chronic kidney disease.  相似文献   
49.
50.

Background

The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Aβ antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Aβ42 (Aβ1–11) , a non-self T helper cell epitope (PADRE), and macrophage-derived chemokine (MDC/CCL22) as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype.

Methods and Findings

We generated pMDC-3Aβ1–11-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3–4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Aβ antibody, which in turn inhibited accumulation of Aβ pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages.

Conclusions

Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号